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Application to Inflation Rate 
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Abstract   

Sampling methods is one of the most important topics in Statistics which 

developed in recent years. Since, all traditional methods use equations that 

estimate the sampling distribution for a specific sample statistic when the data 

follow a particular distribution. Unfortunately, formulas for all combinations of 

sample statistics and data distributions do not exist! For example, there is no 

known sampling distribution for medians, which makes bootstrapping the perfect 

analyses for it. This paper aims to introduce the concept and Methodology of 

bootstrap methods in statistics and focuses on applications in regression 

analysis.These applications contrast two forms of bootstrap re-sampling in 

regression; these techniques require fewer assumptions and offer greater accuracy 

and insight than do standard methods in many problems.Inflation rate is one of 

the most important topics raised in the present time, specially after the crises faced 

in the world (i.e. COVID-19 pandemic, the war of Russian-Ukraine and the crises 

of food and Energy around world), so inflation rate was selected to apply the 

bootstrapping techniques using regression method and compare the results with 

the original sample data using R-Package. 

Key words: Re-Sampling techniques – Bootstrapping – Regression– 

Inflation Rate 
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 المستخلص: 

تعتبر طرق أخذ العينات من أهم الموضوعات في الإحصاء والتي تم تطويرها في السنوات الأخيرة. 
منذ ذلك الحين ، تستخدم جميع الطرق التقليدية المعادلات التي تقدر توزيع العينات لعينة إحصائية محددة 

مجموع  لجميع  توجد صيغ  لا   ، الحظ  لسوء  معينًا.  توزيعًا  البيانات  تتبع  العينات  عندما  إحصائيات  ات 
وتوزيعات البيانات! على سبيل المثال ، لا يوجد توزيع عينات معروف للمتوسطات ، مما يجعل التمهيد 
هو التحليلات المثالية له. تهدف هذه الورقة إلى تقديم مفهوم ومنهجية طرق التمهيد في الإحصاء والتركيز  

طبيقات شكلين من أشكال إعادة أخذ عينات التمهيد في  على التطبيقات في تحليل الانحدار. تقارن هذه الت
الانحدار ؛ تتطلب هذه الأساليب افتراضات أقل وتوفر دقة وبصيرة أكبر من الأساليب القياسية في العديد 
من المشكلات. يعد معدل التضخم أحد أهم الموضوعات التي أثيرت في الوقت الحاضر ، خاصة بعد 

، الحرب الروسية الأوكرانية وأزمات الغذاء والطاقة    COVID-19م )مثل وباء  الأزمات التي يواجهها العال
حول العالم( ، لذلك تم اختيار معدل التضخم لتطبيق تقنيات التمهيد باستخدام طريقة الانحدار ومقارنة  

 . R-Packageالنتائج مع بيانات العينة الأصلية باستخدام  

 معدل التضخم  -الانحدار  -الإقلاع  -عينات  تقنيات إعادة أخذ ال الكلمات المفتاحية:

1. Introduction 

The basic idea of bootstrapping is that inference about a population from 

sample data can be modeled by re-sampling the sample data and performing 

inference about a sample from re-sampled data. The bootstrap procedure was first 

suggested by Julian Simon in 1969. Efron (1979) coined the term "bootstrap", 

and developed this method in the statistical literature since in 1979. 

Varian (2005) defined the Bootstrapping technique as a sampling with 

replacement from observed data to estimate the variability in a statistic of interest. 

As an example, assume we are interested in the average (or mean) height 

of people worldwide. We cannot measure all the people in the global population, 

so instead we sample only a tiny part of it, and measure that. Assume the sample 

is of size n; that is; we measure the heights of n individuals. From that single 

sample, only one estimate of the mean can be obtained. In order to reason about 

the population, we need some sense of the variability of the mean that we have 

computed. The simplest bootstrap method involves taking the original data set of 

n heights, and, using a computer, sampling from it to form a new sample (called 

https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Statistical_dispersion
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a 'resample' or bootstrap sample) that is also of size n. The bootstrap sample is 

taken from the original by using sampling with replacement, assuming n is 

sufficiently large, for all practical purposes there is virtually zero probability that 

it will be identical to the original "real" sample. This process is repeated a large 

number of times (typically 1,000 or 10,000 times), and for each of these bootstrap 

samples we compute its mean (each of these are called bootstrap estimates). We 

now have a histogram of bootstrap means. This provides an estimate of the shape 

of the distribution of the mean from which we can answer questions about how 

much the mean varies 

The idea behind bootstrap is to use the data of a sample study at hand as a 

“surrogate population”, for the purpose of approximating the sampling 

distribution of a statistic; i.e. to resample (with replacement) from the sample data 

at hand and create a large number of “phantom samples” known as bootstrap 

samples. The sample summary is then computed on each of the bootstrap 

samples. A histogram of the set of these computed values is referred to as the 

bootstrap distribution of the statistic (see: Varian, 2005). 

A common application of the bootstrap is to assess the accuracy of an 

estimate based on a sample of data from a larger population (Varian, 2005). 

Dekking et al. (2005) discussed the bootstrapping technique and confidence 

interval of bootstrapping statistics and showing parametric bootstrap. Fang and 

Wang (2012) discussed the problem of selection the number of clusters via the 

bootstrap method. They developed an estimation scheme for clustering instability 

based on the bootstrap, and then the number of clusters is selected so that the 

corresponding estimated clustering instability was minimized. Kuhn and Johnson 

(2018) shown that the bootstrap can be used to quantify the uncertainty associated 

with a given estimator or statistical learning method. 

Bootstrapping techniques can be used in many fields. It is used in applied 

machine learning to estimate the skill of machine learning models when making 

predictions on data not included in the training data. It can be used when the data, 

or the errors in a model, are correlated. Künsch (1989) introduced the moving 

block bootstrap using the Jackknife for general stationary observations. Politis 

and Romano (1994) discussed the stationary of bootstrap. Vinod (2006) presented 

a method that bootstraps time series data using maximum entropy principles 

satisfying the Ergodic theorem with mean-preserving and mass-preserving 

constraints. Cameron et al. (2008) discusses the Bootstrap technique for clustered 

errors in linear regression. 

https://en.wikipedia.org/wiki/Simple_random_sample
https://doi.org/10.1214%2Faos%2F1176347265
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There are some papers discussed the bootstrapping methods in regression. 

Stine (1989) provided two forms of bootstrap resembling in regression, 

illustrated their differences in a series of examples that include outliers and 

heteroscedasticity. Baisariyev et al. (2021) described the real-world 

implementation of the bootstrap method and the assessment of its 

performance with actual data from aviation logistics. James (2021) 

discussed the Efficient of computational algorithms for bootstrapping linear 

regression models with clustered data. 

Inflation is an increase in the general price level of goods and services. 

When there is inflation in an economy, the value of money decreases because a 

given amount will buy fewer goods and services than before and it can be 

measured by Consumer Price Index (CPI). The inflation rate is the percentage 

change in the price index for a given period compared to that recorded in a 

previous period. It is usually calculated on a year-on-year or annual basis.  

  The form of the article is as follows. The next section presents Advantages 

of bootstrap and discusses the Re-Sampling Methods. Section 3 provides simple 

Linear Regression using Bootstrap with some examples for using deferent 

methods of bootstrap. Bootstrap confidence interval Methods discusses in Section 

4. Finally, Section 5 provides application to real data. The paper ends with 

summary of this work. 

 

2. Advantages of Bootstrap and Bootstrapping Methods 

In this section, the advantages of Bootstrap and Bootstrapping Methods are 

discussed. 
 

2.1 Advantages of Bootstrap 

Bootstrapping technique has deferent advantages. It can assess the 

variability of virtually any statistic. 

DiCiccio and Efron (1996) discussed the most important advantages and it 

can be seen as follows: 
 

A. A great advantage of bootstrap is its simplicity.  

B. It is a straightforward way to derive estimates of standard 

errors and confidence intervals for complex estimators of complex 

parameters of the distribution, such as percentile points, proportions, odds 

ratio, and correlation coefficients. 

https://www.sciencedirect.com/science/article/pii/S2351978921002651#!
https://en.wikipedia.org/wiki/Standard_error_(statistics)
https://en.wikipedia.org/wiki/Standard_error_(statistics)
https://en.wikipedia.org/wiki/Confidence_intervals
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C. Bootstrapping does not make assumptions about the distribution 

of the data. 

D. Bootstrapping techniques can be used if the data containing an outlier (to 

detect outlier in data).  

E. Bootstrap is also an appropriate way to control and check the stability of 

the results.  

F. Can getting more than one sample with the same cost of getting one 

sample.  

G. Bootstrap is asymptotically more accurate than the standard intervals 

obtained using sample variance and assumptions of normality, although for 

most problems it is impossible to know the true confidence interval. 
 

2.2 Bootstrapping Techniques 

 Bootstrap is generally useful for estimating the distribution of a statistic 

(e.g. mean, variance) without using normal theory (e.g. z-statistic, t-statistic). 

Bootstrap comes in handy when there is no analytical form or normal theory to 

help estimate the distribution of the statistics of interest, since bootstrap method 

can apply to most random quantities, e.g., the ratio of variance and mean.  

There are at least two ways of performing case re-sampling: 

A. The Monte Carlo algorithm for case re-sampling is quite simple. First, we 

resample the data with replacement, and the size of the resample must be 

equal to the size of the original data set. Then the statistic of interest is 

computed from the resample from the first step. We repeat this routine 

many times to get a more precise estimate of the Bootstrap distribution of 

the statistic. 

B. The 'exact' version for case re-sampling is similar, but we exhaustively 

enumerate every possible resample of the data set. This can be 

computationally expensive as there are a total of Cn
2n−1  different re-

samples, where n is the size of the data set. For example; if the size of 

sample equal 10, there are 92378, different resample must be use for 

estimating inference statistics for original sample (population). 

 

3. Simple Linear Regression Using Bootstrap 
  

In regression problems, case re-sampling refers to the simple scheme of re-

sampling individual cases. In regression problems, the explanatory variables are 

often fixed, or at least observed with more control than the response variable. 

https://en.wikipedia.org/wiki/Explanatory_variable
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Also, the range of the explanatory variables defines the information available 

from them. Therefore, to resample cases means that each bootstrap sample will 

lose some information (see: Liu and Singh (1992)). 

 

There are two ways for using bootstrap in regression, first By using residual 

and second by using pairs (explanatory variables  and response variable). 

 

3.1 Re-sampling Using residual 

The steps of this method proceeds as follows. 

A. Fit the model and calculate the fitted values yî and the residuals eî =

yi − yî where i=1, 2… n. 

B. Create synthetic response variables yi
∗̂ = ej + yî where j is selected 

randomly from the list (1… n) for every i. 

C. Refit the model using the fictitious response variablesyi
∗̂ . 

D. Repeat steps (B) and (C) large number of times. 

The main disadvantage for using this method is to select the residual that selected 

randomly from the list of residuals, i.e. this method depends on residual instead 

of main date.   

Practical Example: Re-sampling Using Residual Method: 

Consider this practical data as follow, and we want to estimate the regression 

model between Y and X. 

Serial 1 2 3 4 5 6 7 8 9 10 

X 232 96 158 194 89 64 25 23 4 2 

Y 104 50 43 41 33 25 16 8 3 1 

So, the estimate of 𝛽01 = 2.80261 and  𝛽11 = 0.333679 

And after first iteration:  

X 
232 96 158 194 89 64 25 23 4 2 

Y 
79.079 35.67 53.046 66.399 56.283 39.322 26.308 8 19.301 8.3253 

The estimate of 𝛽02 =14.47880292and  𝛽12 =0.27841738 

And after second iteration: 

X 
232 96 158 194 89 64 25 23 4 2 

https://en.wikipedia.org/wiki/Explanatory_variable
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Y 
79.079 44.916 45.586 73.361 33.729 26.768 38.465 15.353 10.063 9.507 

The estimate of 𝛽03 =12.97323234and  𝛽13 =0.278574521 

   And after third iteration: 

X 
232 96 158 194 89 64 25 23 4 2 

Y 
73.579 46.061 52.961 85.544 33.739 26.775 15.910 24.580 32.615 15.007 

The estimate of 𝛽04 =16.7675328and 𝛽14 =0.269555338 

Finally, the 4th iteration: 

X 
232 96 158 194 89 64 25 23 4 2 

Y 
95.787 40.3450 60.9699 62.0425 33.1620 37.4352 15.9104 37.7366 10.6015 10.9102 

The estimate of 𝛽05 =13.17000269 𝑎𝑛𝑑𝛽15 =0.308005202 

So, the estimate of 𝜷𝟎 =  
𝟏

𝟓
∑ 𝜷𝟎𝒊

𝟓
𝒊=𝟏  = 12.03843615 

And, the estimate of 𝜷𝟏 =  
𝟏

𝟓
∑ 𝜷𝟏𝒊

𝟓
𝒊=𝟏  = 0.293646288 

3.2 Re-sampling Using pairs (  explanatory variables  and response variable) 

The steps of this method proceeds as follows. 

A. Fit the model (estimate the parameters). 

B. Select the Pairs of explanatory variables  and response variable (xi 

and yi), and refitting the model using the selected sample (𝛽�̂�). 

C. Repeat step B large number of times(let n times) 

D. The estimate of parameters (𝛽�̂�) is  
1

𝑛
∑ 𝛽𝑖𝑗

𝑛
𝑗=1  . 

Practical Example: Re-sampling Using Pairs Method:  

Consider we have the following data; and want to estimate the regression 

model between Y and X.   

Serial 1 2 3 4 5 6 7 8 9 10 

X 232 96 158 194 89 64 25 23 4 2 

Y 104 50 43 41 33 25 16 8 3 1 

The estimate of 𝛽01 = 2.80261 and  𝛽11 = 0.333679 

And after first iteration: 

serial 5 7 5 9 9 8 3 10 9 5 

X 89 25 89 4 4 23 158 2 4 89 

https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Explanatory_variable
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Y 33 16 33 3 3 8 43 1 3 33 

The estimate of 𝛽02 = 3.378302and  𝛽12 = 0.292027 

And after second iteration: 

serial 4 5 7 4 4 1 5 6 4 1 

X 194 89 25 194 194 232 89 64 194 232 

Y 41 33 16 41 41 104 33 25 41 104 

The estimate of 𝛽03 = 1.914852  and  𝛽13 = 0.305144 

And after third iteration: 

serial 7 3 3 7 5 3 2 8 9 1 

X 25 158 158 25 89 158 96 23 4 232 

Y 16 43 43 16 33 43 50 8 3 104 

The estimate of 𝛽04 = 2.718309  and  𝛽14 = 0.342786 

   And after 4th iteration: 

s 7 3 9 10 7 1 4 1 10 6 

X 25 158 4 2 25 232 194 232 2 64 

Y 16 43 3 1 16 104 41 104 1 25 

The estimate of 𝛽05 = 0.918383 𝑎𝑛𝑑 𝛽15 = 0.367608 

 

So, the estimate of 𝜷𝟎 =  
𝟏

𝟓
∑ 𝜷𝟎𝒊

𝟓
𝒊=𝟏  = 2.346492 

And, the estimate of 𝜷𝟏 =  
𝟏

𝟓
∑ 𝜷𝟏𝒊

𝟓
𝒊=𝟏  = 0.328249 

 

4. Bootstrap confidence interval 

 Drawing resample with replacement from the observed data, we record the 

means found in a large number of resample. Looking over this set of means, we 

can read the values that bound 90% or 95% of the entries, this method called a 

bootstrap confidence interval. 

Confidence Interval of parameter θ, is the range that θ can be lie within its 

bounds with a high probability α (significant Level), The two mostly used levels 

of confidence are 95% and 99%. 

  

Wang et al. (2022) provided confidence interval localization of pipeline leakage 

via bootstrap method.   
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There are many types of bootstrap confidence interval; we discuss some of 

them such as Bootstrap Percentile method, Centered Bootstrap Percentile 

Method, Bootstrap-t Methods 

 

 

 

4.1 Bootstrap Percentile method 

 

In bootstrap’s most elementary application, one produces a large number 

of “copies” of a sample statistic, computed from these phantom bootstrap 

samples. Then, a small percentage, say 100( 𝛼
2⁄ )% (usually 𝛼  = 0.05 ), is 

trimmed off from the lower as well as from the upper end of these numbers. The 

range of remaining 100(1-𝛼 )% values is declared as the confidence limits of the 

corresponding unknown population summary number of interest, with level of 

confidence 100(1-𝛼 )% . The above method is referred to as bootstrap percentile 

method. 

Suppose the estimation of parameter 𝜃 at 1000 bootstrap replications of θ̂, 

denoted by (θ1
∗ , θ2

∗  , … θ1000
∗

) . After ranking from bottom to top, let us denote 

these bootstrap values as( θ(1)
∗ , θ(2)

∗  , … θ(1000)
∗ ). Then the bootstrap percentile 

confidence interval at 95%level of confidence would be(θ(25)
∗ , θ(975)

∗ ) (see: Hall 

(1988)). 

 

4.2 Centered Bootstrap Percentile Method 
 

 Suppose the estimation of parameter 𝜃 at 1000 bootstrap replications of θ̂ 

, denoted by ( θ1
∗ , θ2

∗  , … θ1000
∗ ) . After ranking from bottom to top, let us denote 

these bootstrap values as( θ(1)
∗ , θ(2)

∗  , … θ(1000)
∗ ) . Then the Centered bootstrap 

percentile confidence interval at 95% level of confidence would be ( 2𝜃 − θ(975)
∗ ) 

and ( 2𝜃 − θ(25)
∗ ). 

 
 
 

4.3 Bootstrap-t  Methods 
  

Bootstrapping a statistical function of the form T = (θ̂ -q) / SE where SE is 

a sample estimate of the standard error of θ̂, brings extra accuracy. This additional 

accuracy is due to so called one-term Edge worth correction by the bootstrap (see: 

Hall (1992)). 
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The bootstrap counterpart of such a function T is (TB) = ( θB̂ − θ̂)/ SEB) 

where SEB is exactly like SE but computed on a bootstrap sample. The 

confidence interval using Bootstrap – t Method can be given by: 

(θ̂ − SET.975 , θ̂ − SET.025) 

This range for q is called bootstrap-t based confidence interval for q at coverage 

level 95%. Such an interval is known to achieve higher accuracy than the earlier 

method, which is referred to as “second order accuracy” in technical literature. 

 
 

5. Real Data Applications 

This section provided a practical application (real data) for using 

bootstrapping technique to generate different samples from one sample using pair 

method and make a regression analysis between two variables. 

 

5.1 The relation between Inflation Rate and Exchange Rate: 

 

This example is explaining the relation between Inflation rate and 

Exchange Rate, from 2013 to 2017 (Quarterly). Data can be recorded as follows: 

Table 1: Inflation Rate and Exchange Rate in Egypt (Quarterly) 

Exchange Rate 6.78 7.02 6.94 6.94 6.95 7.05 7.10 7.18 7.63 7.63 

Inflation Rate 7.60 9.80 10.10 9.95 9.80 8.20 11.10 10.10 11.50 11.40 

Exchange Rate 7.83 7.83 7.83 8.88 8.88 18.14 16.34 17.02 17.71 17.02 

Inflation Rate 9.20 11.10 9.00 14.00 14.10 23.30 30.90 29.80 31.60 30.77 

Source: The National Bank of Egypt- different series from 2013 to 2017. 

 

Figure 1 describes the scatter plot between inflation rate, as explanatory variable, 

and Exchange rate, as response variable.   
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Figure 1: Scatter plot for inflation rate and Exchange rate 
 

The Regression equation of original data is y = 0.489x + 2.512 

Using bootstrap pairs technique for select samples, withdraw 1000 Samples from 

original sample (i.e. make 1000 iterations) and estimate the parameter of linear 

regression model from each sample. The average of estimated slope and y-

intercept are 0.531087and 2.2729 respectively. So, the linear regression model is 

y = 0.531087 x + 2.27292. 

The Bootstrap confidence interval of sample regression parameters are (0.041, 

0.761), (1.158, 4.341) for slope and y-intercept respectively. 

Figure 2 represent the Error of estimate based on original sample and Bootstrap 

samples. 

 

Figure 2: Error estimate from original sample and Bootstrap sample. 

From Figure 2, we can see that error estimate from Bootstrap sample is lower 

than error estimate from original sample. It can be indicatingthat the estimation 

using Bootstrap method more efficient than estimation using original sample (one 

sample).   

5.2The relation between Inflation Rate and GDP growth Rate: 

This example is explaining the relation between Inflation rate and GDP 

growth rate, from 2009 to 2020 (Annually). Data can be recorded as follows: 

 

Table 2: Inflation Rate and GDP Growth Rate in Egypt (Quarterly) 

 Inflation Rate a Growth Rate of GDP b 

2009 11.8 4.6735998 
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2010 11.1 5.147234859 

2011 10.1 1.764571949 

2012 7.1 2.226199797 

2013 9.5 2.185466055 

2014 10.1 2.915911879 

2015 10.4 4.372019079 

2016 13.8 4.346643453 

2017 29.5 4.181221001 

2018 14.4 5.314121037 

2019 9.2 5.557683888 

2020 5.0 3.569669475 

Source: a: CAPMAS - Monthly Bulletin of Consumer Price Index- Jan.2022. 

   b: World Bank, https://data.albankaldawli.org/indicator. 

 

Figure 3 describes the scatter plot between inflation rate, as explanatory variable, 

and Growth Rate of GDP, as response variable. As seen, from Figure 3, there is 

outlier in original data (at year 2017, the inflation rate become 29.5). This outlier 

may effect on estimation of parameter for linear regression model. While in case 

of using Bootstrap technique to generate samples from original sample, the 

problem of outlier can be detected (because in Bootstrap, we calculate the average 

of estimated parameter). 

The Regression equation of original data is y = 0.0559x + 3.192. 
 

Using bootstrap pairs technique for select samples, withdraw 20 Samples 

from original sample (i.e. make 1000 iterations) and estimate the parameter of 

linear regression model from each sample. The average of estimated slope and y-

intercept is 0.111099and 2.800987respectively. So, the linear regression model is 

y = 0.111099 x + 2.800987. 

 

https://data.albankaldawli.org/indicator
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Figure 3: Scatter plot for inflation rate and Growth Rate of GDP from 2009 to 2020. 

 

The Bootstrap confidence interval for Slope and y-intercept, using percentile 

method, can be seen as (0.0406, 0.3921) and (2.289, 3.134) respectively. 

Figure 4 represent the comparison between Errors of estimate based on original 

sample and Bootstrap samples. 

 

Figure 4: Error estimate from original sample and Bootstrap sample.  

 

From Figure 4, we can see that error estimate from Bootstrap sample is lower 

than error estimate from original sample. It can be indicating that the estimation 

using Bootstrap method more efficient than estimation using original sample (one 

sample).   
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1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

4 9 14 19 24 29 34

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

ERROR (ORIGINAL SAMPLE) ERROR (BOOTSTRAP SAMPLE)



436 
 

Bootstrap methods are a collection of sample re-uses techniques designed 

to estimate Mean, standard errors and confidence intervals. Conversely, the 

traditional methods often assume that the data follow the normal distribution or 

some other distribution. For the normal distribution, the central limit theorem 

might let you bypass this assumption for sample sizes that are larger than ~30. 

Consequently, we can use bootstrapping for a wider variety of distributions, 

unknown distributions, and smaller sample sizes. This paper provides the 

Bootstrap methods that can be used in regression models and shed light on 

confidence interval methods that can be used. Finally, practical and real data 

examples are provided to illustrate the proposed methods. 
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